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In this Letter, we develop the Stokes space-based method for modulation format identification by combing power
spectral density and a cluster analysis to identify quadrature amplitude modulation (QAM) and phase-shift
keying (PSK) signals. Fuzzy c-means and hierarchical clustering algorithms are used for the cluster analysis.
Simulations are conducted for binary PSK, quadrature PSK, 8PSK, 16-QAM, and 32-QAM signals. The results
demonstrate that the proposed technique can effectively classify all these modulation formats, and that the
method is superior in lowering the threshold of the optical signal-to-noise ratio. Meanwhile, the proposed method
is insensitive to phase offset and laser phase noise.
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The continued demand for increased optical network
capacities provides challenges for current and future
network designs. To overcome these challenges, elastic
optical networks equipped with flexible transceivers are
required[1]. In order to demodulate signals optimally at the
receiver side[2], modulation format identification (MFI) is
needed in future elastic optical networks.
Exploration for MFI techniques in optical communica-

tion has just begun. Four different methods have been
employed for optical MFI: (a) identification from constel-
lation diagrams using k-means, which is simple but
requires a carrier and phase recovery before MFI[3];
(b) artificial neural network-based identification, which
can recognize all the formats but needs prior training[4];
(c) principal component analysis-based pattern recogni-
tion on asynchronous delay-tap plots, which can realize
channel estimation in the meantime but needs specific
amounts of sampling points[5]; (d) the Stokes space and
machine learning technique[6].
Here, we theoretically analyze the distribution charac-

teristics of Stokes space clusters for different formats.
Based on this, Stokes parameters are extracted in the
coherent receiver and utilized to distinguish between
quadrature amplitude modulation (QAM) and phase-shift
keying (PSK) signals. Furthermore, a decision criterion
combining fuzzy c-means (FCM) and a hierarchical clus-
tering algorithm is used to provide enhanced discrimina-
tion among the modulation formats. This method was
proved applicable to wireless communications[7]. The
identification algorithm is implemented after chromatic
dispersion (CD) compensation.

For polarization-multiplexed (PM) system, the received
signal R can be expressed with the Jones vector in the
following form:

R ¼
�
Ex
Ey

�
¼

�
Axejφx

Ayejφy

�
: (1)

The Jones vector is transformed into the Stokes vector,
S, as follows[8]:

S ¼

2
664
s0
s1
s2
s3

3
775 ¼

2
6664
A2

x þ A2
y

A2
x − A2

y

2AxAy cos δ

2AxAy sin δ

3
7775; (2)

where δ ¼ φx − φy is the phase difference between the X
and Y polarization components of the Jones vector R. If
the frequency offset, laser linewidth, and initial phase are
considered in the received signal, they just change the
phase of Ex and Ey, and hence the Stokes parameters
are not affected, as shown in Eq. (2). Thus, the proposed
method is insensitive to these impairments. When normal-
ized by maxðs0Þ, the vector ½s1; s2; s3�T indicates different
points inside the Poincaré sphere. Different modulation
formats exhibit different signatures in accordance with
the number of clusters inside the Poincaré sphere; there-
fore, we can identify modulation formats by recording the
number of clusters. For binary PSK (BPSK), quadrature
PSK (QPSK), 8PSK, 16-QAM, and 32-QAM signals, the
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numbers of clusters are 2, 4, 8, 60, 248, and the distribu-
tions inside the Poincaré sphere are shown in Fig. 1.

We theoretically derived the distributions for different
modulation formats. Take 16-QAM, for example: the dis-
tribution of clusters is derived as follows.

Figure 2 shows the constellation diagram of 16-QAM,
and the possible values of amplitude A and phase φ are
listed in Table 1.

The corresponding Stokes vector can be calculated via
Eq. (2). The possible values of ½s1; s2; s3�T are listed in
Table 2. The number of clusters of the 16-QAM signal
is 60.

Figure 1 shows that the number of clusters increases
sharply when the order of modulation increases. The dis-
tances between clusters become smaller, and distinguish-
ing between the adjacent clusters becomes more difficult.
Nevertheless, we find that the data is characterized by
symmetry from Table 2. Therefore, the number of clusters
whose coordinate values, s1, s2, and s3 are all nonnegative
can be utilized to distinguish different QAM signals. The
corresponding numbers for 16-QAM and 32-QAM are
14 and 43, respectively, which is shown in Fig. 3.

We first distinguish between the PSK and QAM signals.
The key feature used is the maximum value of the power
spectral density of the normalized-centered instantaneous
amplitude γmax, which is defined by

γmax ¼ max jDFTðacnðiÞÞj2∕Ns; (3)

where Ns is the number of symbols, DFT means discrete
Fourier transform, and acnðiÞ is the value of the
normalized-centered instantaneous amplitude at the time
instants t ¼ i∕f s, i ¼ 1; 2;…;Ns, defined by

acnðiÞ ¼ anðiÞ− 1: (4)

Here, anðiÞ ¼ aðiÞ∕ma, wherema is the average value of
the instantaneous amplitude

ma ¼
1
Ns

XNs

i¼1

aðiÞ: (5)

For ideal PSK signals, there is no amplitude modulated
information and acnðiÞ is zero; thus, the parameter γmax is

Fig. 1. Stokes cluster inside the Poincaré sphere. (a) PM-BPSK,
(b) PM-QPSK, (c) PM-8PSK, (d) PM-16-QAM, and (e) PM-32-
QAM.

Fig. 2. Constellation diagram of 16-QAM.

Table 1. Amplitude and Phase of 16-QAM
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zero theoretically. For QAM signals, the amplitude is not
constant and acnðiÞ varies; thus, γmax is much higher than
zero[9]. The PSK and QAM signals can be distinguished by
setting an appropriate threshold of γmax. Additionally,
utilizing the spectral power density rather than the time
domain data can lower the influence of burst noise.
After distinguishing between the PSK and QAM

signals, we combine the FCM algorithm and hierarchical
clustering to further identify M-PSK and M-QAM
signals.

FCM is the most popular fuzzy-clustering algorithm. It
is based on the minimization of the following objective
function[10]:

Jm ¼
XN
i¼1

XC
j¼1

umij ‖xi − cj‖2; 1 ≤ m < ∞; (6)

where m is an arbitrary real number greater than 1, N is
the number of sampling points, and C is the clustering
number. uij stands for the degree of membership for clus-
ter j, xi represents the ith measured data, cj is the jth
center of the cluster, and ‖• ‖ is the Euclidean distance
between any measured data and the center.
Fuzzy partitioning is carried out through an iterative

optimization of the objective function in Eq. (6), with
the update of membership uij and the cluster centers cj by

uij ¼
1PC

k¼1

�
‖xi−cj‖
‖xi−ck‖

� 2
m−1

; (7)

cj ¼
PN

i¼1 u
m
ij·xiPN

i¼1 u
m
ij

: (8)

FCM is sensitive to initial conditions, especially the
initial cluster centers, which may lead to local minimum
results. To avoid the local result, a simple and efficient
select rule of the initial cluster centers is applied in the
FCM algorithm[11].

This iteration will stop when maxijfjuðkþ1Þ
ij − uðkÞij jg < ε

is satisfied, where ε is a termination criterion between 0
and 1, and k is number of iteration steps.

After the FCM algorithm iterates over, the number of
clusters is constant, which cannot determine the modula-
tion formats. Determining the actual number of clusters is
necessary in the next step, which is based on hierarchical
clustering, where data is grouped by creating a cluster tree
over a variety of scales. The procedure of hierarchical
clustering is as follows: first, we calculate the Euclidean
distance between every pair of objects in the data set
(centroids after FCM clustering). Then, we group the ob-
jects into a binary, hierarchical cluster tree. Finally, we
determine where to cut the hierarchical tree into clusters,
which will achieve different numbers of clusters. The clus-
ter number can be assigned from 1; 2…K (K is the number
of clusters in the FCM algorithm). In this step, we calcu-
late the objective function for each possibility, and the
number of optimum clusters corresponds to the minimum
value of the objective function. The objective function is
defined as follows[12]:

V ¼
PC

i¼1

PN
j¼1 u

2
ij‖ci − xj‖2 þ 1

CðC−1Þ
PC

i¼1

PC
k¼1;k≠i ‖ci − ck‖2

mini≠k‖ci − ck‖2 þ 1
C

: (9)

For every modulation format, a range is set. We propose
to use the range where the cluster result (the number of
clusters) falls as the decision metrics.

Simulations using VPI and MATLAB are carried out to
verify the above method. Figure 4 shows the simulation
setup. In the transmitter, 28GBaud PM-BPSK, PM-
QPSK, PM-8PSK, PM-16-QAM, and PM-32-QAM
signals are generated separately. In the optical channel,
the PM signal passes through the optical fiber, the set
optical signal-to-noise ratio (OSNR) module, and the
polarization mode dispersion (PMD) emulator. After co-
herent detection and two-fold oversampling, four-channel
signals are sent to the digital signal processing module,
which is implemented using MATLAB. After CD

Fig. 3. Stokes cluster with nonnegative coordinate values inside
the Poincaré sphere. (a) PM-16-QAM and (b) PM-32-QAM.

Fig. 4. Simulation setup and decision flowchart.
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compensation, MFI is performed. The dotted frame at
lower side of Fig. 4 shows the identification flow.
In the first step, the threshold of γmax is set to 1, which is

determined from a number of simulations. The PSK and
QAM formats can be successfully identified when the
OSNR is above 16 dB. Figure 5 shows the values of
γmax versus different OSNRs for different modulation
formats.
Next, the FCM and hierarchical clustering are com-

bined to further distinguish between the PSK and QAM
signals. The decision range for every format is listed in
Table 3.
Figure 6 shows the probability of correct identification

under the effect of OSNR. The OSNR values for different
formats are well chosen based on the needs of a commercial
system. As can be seen from Fig. 6, the probability of cor-
rect identification increases when the OSNR increases, ex-
cept for the BPSK signal. Even when the OSNR is as low
as 1 dB, the BPSK signals can be identified with 100%
probability. For the QPSK, 8PSK, 16-QAM, and 32-QAM
signals, the thresholds of identification with 100%
probability are 17, 22, 28, and 30 dB.

Figure 7 shows the probability of correct identification
under the effect of the first-order PMD, which is quanti-
fied by differential group delay (DGD). Here, we just list
the results for the QPSK and 32-QAM signals. The OSNR
values are set to 17 and 30 dB independently. As can be
seen from Fig. 7, the probability of correct identification
decreases as the DGD increases. The thresholds of identi-
fication with 100% probability for the QPSK and 32-QAM
signals are 22 and 14 ps. So, this method shows high
tolerance to first-order PMD.

In conclusion, we improve the Stokes space-based MFI
method in Ref. [6] by combing power spectral density and
a cluster analysis. The process of clustering utilizes FCM
and hierarchical clustering algorithms. The simulation re-
sults indicate that the method shows higher tolerance to
OSNR and first-order PMD than the method in Ref. [6],
and our method is insensitive to the laser linewidth. Mean-
while, we extend the modulation formats that can be iden-
tified to 32-QAM signals. Since this method is sensitive to
CD, it must be implemented in systems where the CD can
be monitored and compensated precisely, like the systems
in Refs. [13,14]. Meanwhile, the Stokes-based method only
can be used in a receiver capable of measuring Stokes
parameters[6].

This work was supported by the National Natural
Science Foundation of China under Grant No. 61205065.
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